Grouped data (slide 14)
p <- ggplot(data = gapminder, mapping = aes(x = year, y = gdpPercap))
p + geom_line(color="gray70", aes(group = country)) +
geom_smooth(size = 1.1, method = "lm", se = FALSE) +
scale_y_log10(labels=scales::dollar) +
facet_wrap(~ continent, ncol = 5) +
labs(x = "Year",
y = "GDP per capita",
title = "GDP per capita on Five Continents") +
theme_bw()
Facets (slide 19)
p <- ggplot(data = gss_sm, mapping = aes(y = degree, fill = degree))
p + geom_bar() +
facet_grid(sex ~ race) +
guides(fill = "none") +
labs(y = NULL, x = "Count", title = "Degrees earned by GSS Participants")
Organ data Cleveland dotplot demo (slide 29)
by_country <- organdata |> group_by(consent_law, country) |>
summarize(donors_mean = mean(donors, na.rm = T),
donors_sd = sd(donors, na.rm = T))
## `summarise()` has grouped output by 'consent_law'. You can override using the
## `.groups` argument.
p <- ggplot(by_country, mapping = aes(y = reorder(country, donors_mean),
x = donors_mean,
color = consent_law))
p + geom_point() +
theme(legend.position = "top") +
labs(y = NULL, x = "Donor Procurement Rate", color = "Consent Law")
Organ data pointrange plot demo (slide 30)
p <- ggplot(by_country, mapping = aes(y = reorder(country, donors_mean),
x = donors_mean,
xmin = donors_mean - donors_sd,
xmax = donors_mean + donors_sd,
color = consent_law))
p + geom_pointrange() +
theme(legend.position = "top") +
labs(y = NULL, color = "Consent Law")