PSTAT 10 Worksheet 6

Due 7/12/22

Problem 1: Estimating a binomial expectation

Let X be the r.v. that indicates the number heads after flipping a biased coin $n=10$ times, where the probability of heads is $p=0.3$.

1. In mathematical notation, write down the distribution of X. It should include the \sim symbol.
2. Estimate the expectation of X through simulating 10,000 replications

Problem 2: Plotting the binomial pmf

Recall the pmf of a discrete r.v. X is given by

$$
f(k)=\mathbb{P}(X=k) .
$$

Just to reiterate the notation, f is a function of k, the outcome of a random experiment of which X is a numerical value (e.g. number of heads); f is the pmf of X.

The plot of a pmf gives a good idea of the "shape" of a distribution; it is often informative to look at the plot. Recreate the following plot of the pdf of $X \sim \operatorname{Binom}(10,0.18)$.

Hint: dbinom is vectorized. I used the parameters type $=" \mathrm{~h} "$ and $1 \mathrm{wd}=5 \mathrm{in}$ my plot.

Problem 3: Rolls until 15

Roll a fair six-sided die 15 times. How many rolls did it take until the cumulative sum of scores equals or exceeds 15 ?

For example: I rolled
\#\# [1] 266312646646336

After 5 rolls, my cumulative score is $2+6+3+1+2=14$. But after 6 rolls, my cumulative score is $14+6=20$. It took me 6 rolls for a score that equals or exceeds 15 .

What is the expected number of rolls it takes for the score to equal or exceed 15 ? Estimate using 10,000 replications.

Hint: My solution uses the cumsum function along with which.

