PSTAT 10 Worksheet 2

Due 6/28/22 11:59pm

Problem 1: Basic vector manipulation

1. Recall from lecture my 2021 monthly gas bill in order was given by:
```
gasbill <- c(46, 33, 39, 37, 46, 30, 48, 32, 49, 35, 30, 48)
```

It turns out the charge for December should have been 49 instead of 48 . Update the gasbill to reflect the true charge. Try not to "cheat" and just type in all the old values again; use the existing gasbill vector.
2. Recreate the following numeric vector. Avoid typing in all of the values manually.

```
## [1] -50 -51 -52 -53 -54 -53 -52 -51 -50
```

3. Create a vector from 1 to 10 with increments of 0.05 . What is the length of this vector? Hint: Use seq with by argument.
4. Create a vector of length 100 from 1 to 10 with uniform increments. What is the increment? Hint: Use seq with length argument.
5. What happens if you try to use seq with both the length and by arguments specified?

Problem 2

Download the file ws2.csv from the course website and import it into R. This data set has two variables named x and y .

```
ws2_df <- read.csv("ws2.csv")
summary(ws2_df)
```

\#\#	x	y
\#\#	Min. : 2.00	Min. : 1.00
\#\#	1st Qu.:25.75	1st Qu.: 26.00
\#\#	Median :49.50	Median : 53.50
\#\#	Mean : 49.11	Mean : 52.93
\#\#	3rd Qu.:70.00	3rd Qu.: 78.00
\#\#	Max. :99.00	Max. : 100.

Remember the variables in a data frame are accessed by name with the dollar sign (and that the result is a vector).

1. Determine the lengths of x and y.
2. What is the 40 th element of x and the 80 th element of y ?
3. What is the average of all the values in the data frame, including both x and y ?
4. How many elements of x are greater than 70 ?

Let's look at the first 4 elements of x and y :

```
ws2_df$x[1:4]
## [1] 74 89 78 23
ws2_df$y[1:4]
```

\#\# [1] $58 \quad 264880$

The first three elements of x are greater than or equal to their corresponding element in $\mathrm{y}: 74>58,89>$ $26,78>48$. But the fourth element of $\mathrm{x}, 23$, is less than the fourth element of $\mathrm{y}, 80$.
5. How many elements of x are greater than or equal to the corresponding element in y ?
6. What is the proportion of elements of x that are greater than or equal to the corresponding element in y ?
7. How many values in x differ from their corresponding value in y by more than 10 in absolute value? Hint: there is an abs function.

Problem 3

Create a vector of integers from 1 to 12 inclusive.

1. Use the vector to create a 3×4 matrix. Did recycling occur?
2. Use the vector to create a 4 x 4 matrix. Did recycling occur?

Problem 4

Use the heights_df data frame from worksheet 1. The height variable is given in centimeters (cm).

1. Write a vectorized function cm_to_inch that takes a numeric centimeter and converts it to inches. Apply the function to the height vector. First 10 elements are shown below:
```
head(cm_to_inch(heights_df$height), 10) # the head function gives the first elements
## [1] 62.40 67.08 65.52 71.37 68.25 73.71 60.84 65.13 76.05 64.35
```

2. Write a vectorized function cm_{-}to_ft_inch that converts numerical values given in cm to a feet inch format, rounding to the nearest inch.

For example,

```
cm_to_ft_inch(178)
```

\#\# [1] "5 9"

You may need the (vectorized) quotient function $\% / \%$ and the remainder function $\% \%$:

```
# Quotient: 3 goes into 7 two times
7%/% 3
## [1] 2
# Remainder: The remainder when 7 is divided by 3 is one
7%% 3
## [1] 1
```

Remember you should look things up on StackOverflow if you're stuck with some operations. Apply the function to the height vector.
head(cm_to_ft_inch(heights_df\$height), 10)
\#\# [1] "5 2" "5 7" "5 6" "5 11" "5 8" "6 2" "5 1" "5 5" "6 4" "5 4"

