
PSTAT 10 Homework 1
Due 6/28/22 11:59pm

Problem 1: Exploring the ecosystem

Here is a list of five R packages

• beepr
• fun
• fortunes
• cowsay
• praise

Choose one of these packages and download its source code. The list of all packages on CRAN is here
https://mirror.las.iastate.edu/CRAN/. On a package’s page, you can find the package source to download,
which will be in tar.gz format. This is called a tarball.

Unzip the tarball, navigate to an R script, and copy and paste a function’s name and arguments (but not the
body) to your homework solution. Comment on the name of the function and how many arguments it has.

For example in cowsay, the script in cowsay/R/utils.R contains a function check_color:

check_color <- function(clr) {

It takes one argument, clr.

If you’re wondering how I included an incomplete piece of code in my R Markdown, it is because I added
eval = F to my code chunk, like this: {r eval=F}.

Problem 2: More ecosystem exploration

The point of this problem is to demonstrate that a community of developers are constantly improving the R
language.

If you installed R recently, you should be on version 4.2.0 (to check, run R.Version() in the console).

Describe one feature or bug fix that is new in version 4.2.0. This can be found via the what’s new link in
https://mirror.las.iastate.edu/CRAN/. You can simply copy and paste the description for your solution to
this problem.

Problem 3: State areas

Load the library called datasets. The vectors state.area and state.name contain in alphabetical order
the land area (in square miles) and the names of each state in America.

1. Find the mean area of all states.

1

https://mirror.las.iastate.edu/CRAN/
https://mirror.las.iastate.edu/CRAN/

2. Find the median area of all states.
3. Find the name and the area of the smallest state.
4. Find the name and the area of the largest state.

There are many ways to do parts 3 and 4, but one way is to use which.min and which.max.

Problem 4: Dot product

The dot product of two vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) is the number
n∑

i=1
xiyi = x1 × y1 + x2 × y2 + · · · + xn × yn.

Write a function dot_product that takes two numeric vectors and returns their dot product. If either
argument is not numeric, print the message Both arguments must be numeric!

Test your function on the following inputs:

dot_product(1:3, c(0, 1, 5))

[1] 17

dot_product(2, 4)

[1] 8

dot_product(c(1, 1), c("dog", "cat"))

[1] "Both arguments must be numeric!"

Problem 5: Frobenius norm

The Frobenius norm of a matrix is the square root of the sum of the squares of all its entries. For example,
the Frobenius norm of the matrix [

1 2
3 4

]
is

√
12 + 22 + 32 + 42 =

√
1 + 4 + 9 + 16 =

√
30 ≈ 5.48. Write a function frobenius_norm that takes

a numeric matrix and returns its Frobenius norm. If the input is not numeric print Argument must be
numeric! and if the input is not a matrix, print Argument must be a matrix!.

Test your function on the following inputs:

frobenius_norm(matrix(1:4, nrow = 2, ncol = 2))

[1] 5.477226

frobenius_norm(c(3,5,7,10,15,21))

[1] "Argument must be a matrix!"

2

frobenius_norm(matrix(c(3,5,7,10,15,21), nrow = 2, ncol = 3))

[1] 29.1376

frobenius_norm(matrix(c(3,"fish",7,10,15,21), nrow = 2, ncol = 3))

[1] "Argument must be numeric!"

Problem 6: Compare Count

Write a function compare_count that takes three arguments: x, y, comp. Arguments x and y are numeric
vectors of the same length, and comp is one of the three characters (strings) >, <, =. The function
compare_count returns the number of elements in x that are greater than, less than, or equal to the
corresponding element in y, depending on the value of comp. The comp argument should default to “>”. If
these assumptions are not met print error messages that match the sample output below. If there is an error,
do not do any further operations.

compare_count(rep(1, 5), rep(2, 5))

[1] 0

compare_count(rep(1, 5), rep(2, 5), ">")

[1] 0

compare_count(c(1, 2, 1, 2, 1), rep(2, 5), "<")

[1] 3

compare_count(c(1, 2, 1, 2, 1), rep(2, 5), "=")

[1] 2

compare_count(c(1, 2, 1, 2, 1), rep(2, 5), ">=")

[1] "Unrecognized compare operator!"

NULL

compare_count(c(1, 2, 1, 2, 1), rep(2, 6), "=")

[1] "Both vectors must have the same length!"

NULL

3

compare_count(c(1, 2, 1, 2, "owl"), rep(2, 6))

[1] "Both vectors must be numeric!"

NULL

4

	Problem 1: Exploring the ecosystem
	Problem 2: More ecosystem exploration
	Problem 3: State areas
	Problem 4: Dot product
	Problem 5: Frobenius norm
	Problem 6: Compare Count

