
PSTAT 10 Final Exam Solutions

July 28, 2022

Name:

Section (circle one):

• Olivier MW 8:00AM

• Jeff MW 9:30AM

• Jeff MW 12:30PM

Instructions

You have 80 minutes to complete 6 problems, some of which contain subproblems.

You are allowed one sheet, two sides of handwritten notes.

If you run out of space for your code, write your code on scratch paper and clearly indicate which problem it
corresponds to. You can always ask for more scratch paper.

Please make sure your handwritten code is legible. I cannot give credit to code that is unreadable.

Score: _________________ out of 36

1

Problem 1: Last Negative (3 pts)

Write a function last_negative that takes a numeric vector v and returns the last element that is less than
zero.

last_negative(c(1, -9, 0, 6, -7, 0))

[1] -7

last_negative(c(-1, -4, 0, 2))

[1] -4

last_negative <- function(v) {
which_vec <- which(v < 0)
v[which_vec[length(which_vec)]]

}

Problem 2: Primes (6 pts)

The function is_prime(x) returns TRUE if x is a prime number and FALSE otherwise. It is a vectorized
function. You do not need to implement is_prime; assume it is already implemented and available.

1. Write code that outputs the number of prime numbers below 100. Your code does not have to be a
function, but should output the answer to the console when executed. (3 pts)

sum(is_prime(1:100))

[1] 25

2. Write code that outputs the sum of the prime numbers whose square is below 2,000. (3 pts)

p <- (1:100)[is_prime(1:100)]
p[pˆ2 < 2000]

[1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43

2

Problem 3: Exponential distribution (8 pts)

How long will a lightbulb last? How long until a bird arrives at my bird feeder?

A distribution that models such questions is the exponential distribution. We write X ∼ Expo(λ) if X is
exponentially distributed with rate λ; the parameter λ is the rate of failure of a lightbulb or the rate that
birds arrives at my bird feeder. X is a random variable with support (0, ∞).

R has built-in functions for the exponential distribution. They are:

• dexp(x, rate = 1)
• pexp(x, rate = 1)
• rexp(x, rate = 1)

The waiting time until the Old Faithful geyser erupts is exponentially distributed with rate 0.014 (erup-
tions/minute). Determine the following.

1. Is the exponential distribution discrete or continuous? (Circle one) (1 pt)

• Discrete

• Continuous

2. The probability that the geyser erupts after the next 30 minutes, but within the next 60 minutes. (2
pts)

pexp(60, rate = 0.014) - pexp(30, rate = 0.014)

[1] 0.2253363

3. The probability of waiting longer than 90 minutes for the next eruption. (2 pts)

1 - pexp(90, rate = 0.014)

[1] 0.283654

4. Use 10,000 replications to determine the expected waiting time until the next eruption. (3 pts)

mean(rexp(10000, rate = 0.014))

[1] 71.37969

3

Problem 4: Gambler (5 pts)

A gambler plays the following game.

• The gambler starts with $10.
• Each round, a coin with probability 5/6 of landing heads is flipped.
• If heads, $2 is added to the gambler’s account.
• If tails, the gambler’s account is cut in half.
• The game lasts for n rounds.

Part A

Write a function gamble(n) that returns the amount in the gambler’s account at the end of n rounds, where
n is guaranteed to be a positive integer. (3 pts)

gamble <- function(n) {
account <- 10
for (i in seq_len(n)) {

coin <- rbinom(1, 1, 5/6)
if (coin) {

account <- account + 2
}
else {

account <- account / 2
}

}
return(account)

}

Part B

Write code that estimates, using 10,000 replications, the expected amount in the gambler’s account after
playing the game for 15 rounds. (2 pts)

mean(replicate(10000, gamble(15)))

[1] 17.2955

4

Problem 5: astro (8 pts)

A relational database called astro contains three tables: star, planet, and moon. These tables contain data
describing celestial objects in the observable universe.

A small portion of data in these tables is provided below. I emphasize that these are not all of the records,
only a small sample for each table.

Table 1: star

StarId Name Mass Radius
1 Sun 1.00 1.00
2 Alpha Centauri A 1.07 1.22

Table 2: planet

PlanetId PrimaryId Name Mass Radius
3 1 Earth 1.00 1.00
5 1 Jupiter 317.80 11.21
6 1 Saturn 95.16 9.45

19 2 Proxima b 1.07 1.30

Table 3: moon

MoonId PrimaryId Name Mass Radius
1 3 The Moon 0.012 0.27

13 5 Ganymede 0.025 0.41
20 6 Titan 0.023 0.40

We know that the Earth revolves around the Sun. The Sun is referred to as the Earth’s primary. Similarly,
the Earth is the Moon’s primary. This data is reflected in astro. Take some time to understand it.

Note: I purposefully left out the units of measurement in order to simplify the problem. In case you are
curious, the measurements of planet and moon are given in Earth units while those of star are given in
Solar units.

Answer the questions on the next page.

5

Part A: (2 pts)

Write down the primary key and foreign keys of each table. If a key does not exist, write “None”.

1. star

• Primary key: StarId
• Foreign key(s): None

2. planet

• Primary key: PlanetId
• Foreign key(s): PrimaryId

3. moon

• Primary key: MoonId
• Foreign key(s): PrimaryId

Write a single SQL query that retrieves the data specified below. For full credit, retrieve only the fields
specified and write only SQL and nothing else. Using more than one query to solve the problem will be
awarded half credit. Do not include dbGetQuery and other R code. It is not SQL.

Part B: (2 pts)

Retrieve the StarId, Name, and Radius of all stars with radius greater than 12.5.

select StarId, Name, Radius from star where Radius > 12.5

Part C: (2 pts)

Retrieve the Name of the moon, Name of its planet, and Mass of its planet for all moons orbiting a planet with
mass less than 20. Result should have the three fields described.

-- Joining in any order is okay (e.g. planet first and then moon)
-- This is how you do comments in SQL, by the way.
select m.Name, p.Name, p.Mass from moon m

inner join planet p on m.primaryid = p.planetid
where p.mass < 20

Part D: (2 pts)

Retrieve the Name of the planet, Name of its star, and its number of moons for all planets that have at least
one moon. Result should have the three fields described.

select p.Name, s.Name, count(*) from planet p
inner join star s on p.primaryid = star.starid
inner join moon m on m.primaryid = p.planetid
group by p.planetid

having count(*) >= 1

6

Problem 6: Emails (6 pts)

I have two inboxes, labeled A and B. The email tibble gives how many emails arrive in each inbox for 360
days of the year. The variables give the inbox, month, day, and number of new emails.

email

A tibble: 720 x 4
Inbox Month Day Count
<fct> <int> <int> <int>
1 A 1 1 2
2 B 1 1 2
3 A 1 2 3
4 B 1 2 1
5 A 1 3 3
6 B 1 3 3
7 A 1 4 4
8 B 1 4 2
9 A 1 5 3
10 B 1 5 1
... with 710 more rows

Here is a random sample of 10 observations from email.

set.seed(100)
email |> slice_sample(n=10)

A tibble: 10 x 4
Inbox Month Day Count
<fct> <int> <int> <int>
1 B 12 27 4
2 A 9 12 2
3 B 6 29 2
4 B 11 12 2
5 B 8 25 2
6 B 9 18 0
7 B 2 19 1
8 A 1 4 4
9 A 4 2 6
10 A 5 30 3

1. Since I am such a hard worker, I even answer emails on my birthday, January 28th. Write code to
determine how many new emails arrived on my birthday, in either inbox. Your code must produce the
provided output, which is a tibble with 1 row and 3 columns. (2 pts)

(email1 <- email |>
group_by(Month, Day) |>
summarize(TotalCount = sum(Count)) |>
filter(Month == 1, Day == 28))

A tibble: 1 x 3
Groups: Month [1]

7

Month Day TotalCount
<int> <int> <int>
1 1 28 5

2. Create a tibble email2 which gives the average number of emails for each month for each inbox. The
output is given, arranged by increasing Month for clarity. Your output need not be sorted as shown.

(email2 <- email |>
group_by(Inbox, Month) |>
summarize(MonthAvg = mean(Count)))

A tibble: 24 x 3
Groups: Inbox [2]
Inbox Month MonthAvg
<fct> <int> <dbl>
1 A 1 2.9
2 A 2 3.27
3 A 3 2.93
4 A 4 2.83
5 A 5 2.7
6 A 6 3.17
7 A 7 2.83
8 A 8 2.7
9 A 9 3.17
10 A 10 3.3
... with 14 more rows

3. Using email2 create the ggplot shown below. (2 pts)

ggplot(email2, aes(x = Month, y = MonthAvg)) +
geom_line(size = 0.7) +
facet_wrap(~ Inbox)

A B

2.5 5.0 7.5 10.0 12.5 2.5 5.0 7.5 10.0 12.5

2.75

3.00

3.25

3.50

3.75

Month

M
on

th
A

vg

8

	Name:
	Section (circle one):
	Instructions
	Score: _________________ out of 36
	Problem 1: Last Negative (3 pts)
	Problem 2: Primes (6 pts)
	Problem 3: Exponential distribution (8 pts)
	Problem 4: Gambler (5 pts)
	Part A
	Part B

	Problem 5: astro (8 pts)
	Part A: (2 pts)
	Part B: (2 pts)
	Part C: (2 pts)
	Part D: (2 pts)

	Problem 6: Emails (6 pts)

